DIY Wing End Plates

A wing without end plates allows the low-pressure air below the wing to bleed over into the high-pressure air on top of the wing. This interaction creates vortices, which reduce downforce and create drag. The middle of the wing still works well, but you get progressively less downforce and more drag at the ends. For a quick video on why a wing needs endplates, see this video by Kyle.Engineers.

End plates separate the flow between the top and bottom of the wing, effectively reducing drag and increasing downforce. The end plate has to be large enough to keep these two pressure zones from colliding.

In the following image, notice how different wing shapes have similar high-pressure areas above the wing, but very different low pressure shapes below the wing. Indeed, the shape of the end plate should be similar to the pressure zone shape. Note that the low pressure side (suction) is more important than the high pressure side, and so end plates must extend further below the wing.

End plate shape should match pressure zone shape. Image is upside down so that it relates to car wings. Image from Race Car Aerodynamics, buy the book.

Take a look at the wing shapes above:

  • The first one (on the left) is a wing with a NACA profile around 4410. (4 degrees of camber, max camber at 40% of the chord length, thickness of 10% of chord length). It’s like a less aggressive 9 Lives Racing wing.
  • The second one looks like a skateboard deck. I’ve seen a lot of DIY wings in 24 Hours of Lemons (skateboard decks, snowboards, and just a piece of curved wood), and I love the spirit. Mostly I don’t see them with end plates. Do it!
  • The third one is a symmetrical airfoil. It doesn’t make a great wing for a car, but is good for stanchions and other places where you need to hold something up with little drag.
Inside the race cars of future past
Early days with no end plates and symmetrical air foil. We don’t use this shape now except for wing stands or other braces.

DIY single-element end plate

I use aluminum sheet for end plates (recycled street signs are a good source of aluminum), but you could use any sheet metal, carbon fiber, plywood, alumalite, etc. The endplate needs to be relatively stiff and light.

Different racing organizations have rules on end-plate size, and for simplicity, you can make a rectangle or square of whatever the maximum size is. Some people will cut a notch on the top trailing edge to create a trailing vortex (see the F1 wing below), and you can shape the bottom to match your pressure zone (see first image).

Pro tip: Lay a straight edge across the chord of the main wing, and use that same angle for the top of the end plate. This makes it easy to set and adjust your wing angle using the top of the end plate.

If you look at F1 end plates you’ll notice slots above and below the wing, a leading-edge slat, strakes along the sides, and a gurney flap at the trailing edge. Yes, all of this on the end plate! All of these tricks further improve end plate functionality, but are a bit overkill on a street-based car with an off-the-shelf wing. I personally wouldn’t bother with these modifications, but it’s good for conversation.

Bite-size tech: Red Bull RB12 rear wing endplates
These end plates are overkill on a Miata, but what the heck, let’s talk about it.

End plates for dual wings

Last summer I raced in the 24 Hours of Lemons race at Thompson, and saw some good aero, and a lot of bad. Lemons cars have wings largely for looks, it doesn’t really matter that some of them were a slab of plywood set at an angle. Among these quasi-aero devices were a lot of cheap eBay/Amazon wings that would have worked, but were done poorly.

Case in point: on one orange Chevy Lumina (winner of the IOE), the wing was on backwards. I enquired about this, and apparently the wing came pre-assembled with the pointy part of the wing facing forward! That’s just dumb from the “factory” but shame on the team for not correcting it. Or maybe it was intentional? This is Lemons, it’s hard to tell.

Lemons Pittsburgh: Lemons Adds Pitt Race for 2019, Moves NJMP ...
Winner of 24 Hours of Lemons “Index of Effluency”. The wing is assembled backwards, with the trailing edge pointing forwards. Love those end plates.

At the race I saw a lot of dual wings with absolutely ridiculous end plates that had big holes or cutouts on the underside. As you saw from the first image, the underside of the wing is what matters! Moreover, they had the upper wing mounted so far away from the main wing that it defeated the purpose of a dual wing setup.

Take a look at these disasters, with the meat of the endplate at the back of the wing, or a cutout below that would let the pressure zones collide. It would be easy to correct the function of these wings by building your own end plates.

Car-52-034-Adjustable-Aluminum-GT-Double-Deck-Racing-Rear-Trnnk-Spoiler-Wing-Black
These end plates do almost nothing for the low pressure side of the wing.
GT Wing Spoiler 52Inch Universal Lightweight Aluminum Rear Spoiler Wing Adjustable Angel Double Deck Racing Spoiler BGW Drift JDM Drift Black
Designed by fucktards. No adjustability of the upper wing, too large of a gap between the wings, and the end plate is facing the wrong way.

DIY dual-element end plates

So if you have a crappy dual-element wing with crappy end plates, and you want to make it work better, build your own end plates. Again, let’s start by looking at the pressure zone below the wing.

This image is from Competition Car Aerodynamics. Buy this book.

Notice that the low-pressure zone extends below the wing by almost the length of the chord of the main wing. Meaning, if you have a 10″ chord wing, you’re going to need at least a 10″ deep end plate. Also notice that the low pressure zone extends in front of the wing, but not much at the trailing edge.

In Competition Car Aerodynamics, McBeath examines what happens with end plates of different sizes. At first he uses no end plate (ep0), and then end plates of increasing size. The larger the end plate, the more downforce and less drag.

End plates of different sizes on a dual-element wing.
End PlateDownforce% IncreaseDrag% Decrease
ep0 (none)769.2Equal194.8Equal
ep1 (minimal)786.72.3%188.33.5%
ep2 (medium)873.413.6%183.86%
ep2 (large)900.117%178.19.4%
Bigger end plate means more downforce and less drag.

OK, so if bigger is better, how big is too big? There is a height at which end plates start creating more drag, and a diminishing return on downforce. But I don’t want to give away all the secrets, so please buy the books on my Resources page and learn yourself some aero.

Make ’em

Here’s how I’d DIY myself end plates:

  • Start with a 12″ x 12″ piece of sheet metal. Use a street sign if you’re Lemons, otherwise plain aluminum will do.
  • Put most of the surface area at the front and below the wing (as pictured in the drawing, above).
  • Lay a straight edge across the chord of the main wing, and use that same angle for the top of the end plate. This will help you set and adjust your wing angle.
  • After mounting the main wing as above, mock up where you want the holes for the secondary wing. I would put a single mounting hole in front that acts as a pivot and drill two holes at the rear: one at 25 degrees, one at 35 degrees. I don’t trust adjustment slots, and so I go with holes instead.
  • Make the gap between the wings about a half inch in height, and overlap the upper wing on top of the lower wing by about a quarter inch. This should create a convergent gap between the wings, meaning the front opening is larger than the rear. This will accelerate the air going through the gap.
  • Set the lower wing angle almost flat (zero degrees). Most wings will have the highest lift-drag ratio in this vicinity.
  • Start the upper wing at 25 degrees and if you need more downforce, use the 35 degree hole. Don’t exceed 35 degrees with the upper wing. If you still need more downforce, rake the entire wing a few degrees.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s